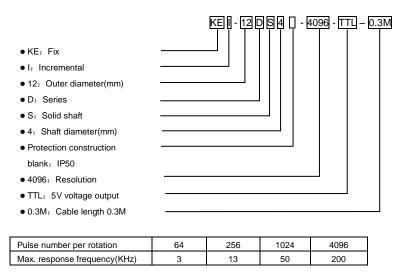





# Power Source DC5V


Out A/B/Z(H/L:5V/OV)

| Starting torque      |        | Max.1×10 <sup>-3</sup> N⋅m (+20℃)                         |  |
|----------------------|--------|-----------------------------------------------------------|--|
| Max. allowable       | Radial | 10N                                                       |  |
| shaft load           | Thrust | 5N                                                        |  |
| Max. allowable speed |        | 6000rpm                                                   |  |
| Flat cable           |        | Nominal core cross section<br>AWG28(0.08mm <sup>2</sup> ) |  |
| Weight               |        | Approx.10g(cable length 0.3m)                             |  |

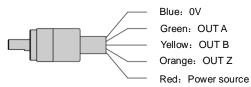
#### Operation temperature:-20~+75℃ Ambient temperature Storage temperature: -30~+80°C 35~90%RH (non-condensing) Ambient humidity AC500V(50/60Hz) 1minute Withstand voltage Insulation resistance ${\geqslant}20M\Omega$ (between power supply, signal line and body) Vibration resistance rable for 1h along 3 axes at 10 to 55Hz with 0.75mm amplitudes Shock resistance 11ms with 490m/s<sup>2</sup> applied 3 times 3 axes

Dust proofed:IP50

#### **Composition of model number**

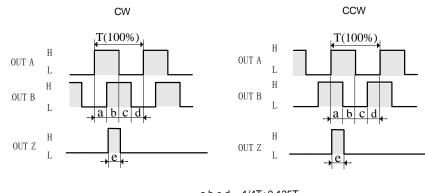


Protection construction


\*The electric maximum response frequency is specified by resolution (pulse number) and the maximum number of revolutions.

Electrical maximum number of revolutions = (Maximum response frequency / Resolution) x 60 If the encoder rotates at a speed greater than the electrical maximum number of revolutions, the signals do not electrically follow.

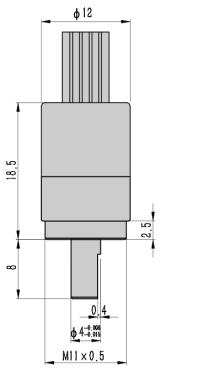
#### **Electrical specifications**


| Type No.           |                         |     | KEI-12DS4                                                          |
|--------------------|-------------------------|-----|--------------------------------------------------------------------|
| Power<br>supply    | Operating voltage       |     | DC 5V±0.25V                                                        |
|                    | Allowable ripple        |     | ≪3%rms                                                             |
|                    | Current consumption     |     | ≤10mA (without load)                                               |
| Output<br>waveform | Signal format           |     | Two-phase + home position $(4\mu s)$ ,home position width is fixed |
|                    | Max. response frequency |     | 200kHz                                                             |
|                    | Duty ratio              |     | 50%±25%                                                            |
|                    | Phase shift             |     | 25%±12.5%                                                          |
|                    | Rising/falling time     |     | $\leqslant$ 1.0 $\mu$ s (cable length 0.3m)                        |
| Output             | Output type             |     | TTL voltage output                                                 |
|                    | Output voltage          | "H" | ≥2.5V                                                              |
|                    |                         | "L" | ≤0.5V                                                              |
|                    | Output current          |     | ≤5mA.                                                              |

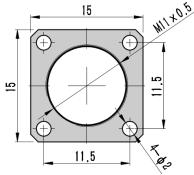
### Connection



## Green: OUT A Yellow: OUT B Orange: OUT Z


### **Output signal timing chart**




a,b,c,d= 1/4T±0.125T  $e = 4\mu s \pm 0.4\mu s$ 

Note: 1.Clockwise rotation when the main body is seen from the axle side is the normal rotation. 2. Phase Z is aligned with the rising edge of Phase B during forward rotation, and phase Z is aligned with the rising edge of Phase A during reverse rotation (phase Z width is fixed)

#### **External dimensions**







#### Installation method: screw fixation, flange fixation

- Do not wire the cable in parallel with other power lines and do not share a duct with other cables.
- Use capacitors or surge absorption elements to remove the sparks caused by relays and switches in the control panel as far as possible.
- Be sure to connect all wires properly, as wrong wiring can damage the internal circuitry.
- The service life of the bearing is largely affected by the amount of load to the shaft. Try to reduce the load as much as possible.
- Do not disassemble the product.
- As the rotary encoder is composed of precision parts, its function will be impaired when it is subjected to shocks. Use sufficient care for handling and mounting.
- Avoid using this product in the following places: the place where there is excessive vibration and shock, the encoder may be damaged; the place where there are devices with strong magnetic and strong electrical interference; the place where there is flammable, corrosive gases, splashing water, oil and dusty; the place where the temperature and humidity exceeds the standard; the place where strong alkali and strong acid materials nearby; the place where receives direct sunlight.